U90Ladder Special Functions via Sls& SBs

5/24/2004

Table Of Contents
Special Functions: wWithout EIemMeNts..............oooiiiiiiii e 1
Functions activated by SI 140 ........oooiii e e e e e s e e e e e 4
N = 7[R ST P O RP 4
CommuUuNICAtIoN ULIHIES ... e e e e e e s ee e e e e e e e enes 5
(070] o) ANV =1 (o] PSSR 10
LY=o (o ) RSP 11
Find Mean, Maximum, and Minimum ValUEs .............coooiriiiiiiiiiee e 13
GSM PIN Code Via Ml ...ttt e e e e e et e e e e e e e eans 14
INEITUPL ... 15
(o F=To N 1o o 1= Tox SRRt 16
Load Timer Preset/Current ValUe.............oocueiiiiiiiii et 17
IMIODBUS ...ttt e e ettt e e e s a et e e e aate e e e e ettt e e e anbeeeeeabteeeesanseeeeeanteeeeeanteeeanes 18
SMS Phone Number: via Ml POINTET .........oooiiiiiiiiii e e 25
Store Timer's Preset/Current ValUE ........oooi oot e e 27
SQUAE ROOL ...ttt et e st e e et e e e naeeae s 28
FUNCLions activated DY SBS..........ooiiiiiiiii e 29
Convert MB 10 MI, MITO IMB ... e et e e e aeaeees 29
Copy Ml to Output vector, Input vector to MI ... ... 30
Database: Access indirectly addressed registers ... 32
Deleting SIMS MESSAGES .....uueiieiiiiie ettt et e e sttt e e st e e e st eeesanteeeessnteeeesanteeeeeaseneeeans 35
Immediate: Read Inputs & HSC, Set/Reset QUIPULS............ccooiiiiiiiiiiiiiiiiceeee e 35
B o] aTo B 101 Yo T=Tul 18] Uod o o <SR 36
Y= 4= o] o USRS 38
Shift REGISTET ... .ot e e e e e e et e e e e e e e s e s nbaaeeeaesannnnnes 41
Display Integer values as ASCII or Hexadecimal...............cooeeeiiiiiiiiiiiii e, 42
o =GP 45






Special Functions: without Elements

U90Ladder contains special functions that are not represented
by Ladder Elements. You can perform these functions by
storing values into the System Integers listed here.

To implement a special function, first store the parameters of
the function in the relevant Sl function operands, as described in
the Help topic of the function, then store the command number

into SI 140.

Note that when you run Test (Debug) Mode, the current value in
Sl 140 will not be displayed.

Click on the function name in the following tables to view a topic
containing specific instructions on how to implement the

function.

Functions activated by S| 140

Function Name

A*B/C

Communication
Utility

Copy Vector

Fill Vector

Find Mean
Maximum, and
Minimum Values

Description

Enables PLC to
multiply 2 operand
values & divide the
product by a third
operand.

Enables PLC to
receive data from
external devices,
such as bar-code
readers, via an
RS232 port.

Set a vector, copy
source values,
then write those
values into a
corresponding
target vector.

Copies a source
value, then write
that value into
every operand
within the target
vector.

Find within vector:
Mean, Minimum, &
Maximum.

Parameters

[ S YY)

Sl 141

SI

140

141

142

143

144

145

146

Operand A (multiplicand).
S1 142 Operand B (multiplicand),

S1 143 Operand C (divisor).

Sl 141
Sl 142
Sl 143

STX
ETX

ETX Length or Silent
S| 144 Maximum Length

Description

Function

Function

Function

Function

Function

Function

Function

S| 145 Start Address: Receive Buffer
S1 60 # of Bytes currently in Receive

Buffer

S1 61 # of Bytes in Receive Buffer when

SB 60=1

S1 146 Copy Data: Format

SB 60 Data Successfully Received

S| 141 Source Vector
S1 142 Vector Length
S| 143 Target Vector

S| 141 Start of Target vector,
S| 142 Length of Target vector,

SI 143 Fill Value; register whose value
will be written into each register within the

target vector

S| 141 Start of vector,
S1 142 Length of vector

Number

Operand #1
Operand #2
Operand #3
Operand #4
Operand #5

Operand #6

Execute Function,
Store into SI140

) 100

) 300
) Additional Functions:

) Set SB 61 to Copy
Data in Receive Buffer
to Vector

) Set SB 62 to Clear
Receive Buffer, Clear
S1 60, Clear SI 61,&
Reset SB 60

Copy Mis to Mls: 20
Copy Mls to DBs: 21
Copy DBs to Mis: 22
Copy DB to DB: 23

v v v v

) Fill Ml vector: 30
) Fill DB vector: 31

) Find in Ml vector: 40
) Find in DB vector: 41



U90Ladder Special Functions

GSM PIN Code
via Ml

Interrupt

Load Indirect

MODBUS

SMS Phone
Number: via Ml
Pointer

Square Root

Uses an MI vector
to supply a GSM
modem PIN code

Causes program to
stop immediately
without regard to
program scan

Takes value
contained in a
source operand
and loads that
value into a target
operand using
indirect
addressing.

Enables MODBUS
Master/Slave
communications

Uses an MI vector
to supply a phone
number in the SMS
phone book

Finds the square
root of a number

Functions activated by SBs

Function Name

Description

) S| 141 Start of vector

See Interrupt for details

) Sl 141 Data source
) Sl 142 Load target

See MODBUS for details

S| 141 Start address of the MI
vector containing the phone
number

S| 141 Store the number

Parameters

) 410

) 500

Load Ml to MI: 10
Load Sl to MI: 11
Load Ml to SI: 12
Load Sl to SI: 13

v v v v v

Configure: 600
Read Coils: 601
Force Coil: 602
Force Coils: 603

Read Output
Registers: 604

Preset Register: 605
Preset Registers:606

Read Output
Registers in Float
Format: 607

Preset Float
Registers: 608

Read Input Registers:
609

Read Input Registers
in Float Format: 610

Read Inputs: 611
Loopback Test: 612

) Store 400 into SI 140

[ S Y )

(9 (9 (S )

(9

v v

Store 110 into SI 140

(9

Activating SB-SI

Convert MB to MI,
M| to MB

Converts 16 bits
or more into a
integer value, or
an integer value
into 16 bits

) SI 170 Address of Ml containing
integer value

) SI 171 Start address of MB
array (vector)

) SI 172 Amount of MBs

) Set SB 170 to activate MB to
Mi

) Set SB 171 to activate Ml to
MB

Copy MI to OQutput
vector, Input vector

to MI

) Copy a vector of
Inputs (1 ) to a
register.

) Copy a register
value to a vector of
Outputs (O)

-

S| 170 Address of MI containing
integer value

S| 171 Start address of bit array
(vector)

) Sl 172 Amount of bits

-

) Set SB 170 to activate | to Ml

) Set SB 171 to activate Ml to
(0]




Database

The M90/91 has
a special
memory area
containing
integers that are
function as a

Special Functions: without Elements

Within the database, you can access and use integers
0 through 1023 via S| 40 and Sl 41. See Using the

Database for details.

database.
Immediate: Read Perform Model dependent; to learn what is relevant to a
Inputs & HSC immediate particular controller model, see Help topic Immediate:

Set/Reset OQutputs

actions, without
regard to the
program scan.

Read Inputs & HSC, Set/Reset Outputs.

Long Integer
Functions

) Uses adjacent Mls
in performing
calculations and
storing results.

> M91 Only.

)

Set SB 82 to treat 2 registers as 'long
integer’

Shift Register

Load SI 87 with
a value, use SBs
to shift register
bits left/right

) S| 87 Contains the
number to be shifted

) Sl 88 contains the
number of bits to be
shifted (Default is 1 bit)

)
)

Set SB 87 to shift left
Set SB 88 to shift right




U90Ladder Special Functions

Functions activated by S| 140
A*BIC
This function enables you to :
¢ Multiply 2 operand values,
& Divide the product by a third operand.
The product of the multiplication operation is temporarily stored in a long integer to avoid
overflow problems.

Since there is no Ladder element for this function; you perform it by storing values into:

Sl 141 to provide Operand A (multiplicand),
Sl 142 to provide Operand B (multiplicand),
Sl 143 to provide Operand C (divisor),

Store 100 into Sl 140 to call the function. In your application, call the function after you have
entered all of the other parameters.

The results will be placed in:

& S| 144,
# S| 4: Divide Remainder.

If the result is out of the integer range:

@ SB 141 will turn ON.
If the value contained in Operand C (divisor) is O:

# SB 4: Divide by 0, will turn ON.
To use this function:




1141,

et the address of Operand & by staring a value into

110

il

e E |-

51 141 Operand
&

Sl142.

Set the address of Operand B by storing a value into

Ml 12

|51 142 0perand

E

51143,

et the address of Operand C by =toring a value into

EES

=

e E

51143 0perand
C

into 51140,

Select the function type by storing the function number

#100

| 51140 Select

Funchion

Communication Utilities

Special Functions: without Elements

Function Number Description
(SI 140)
100 Multiply A x B, Divide

by C

Note that when you run Test (Debug)
Mode, the current value in Sl 140 will not
be displayed.

Use this utility to enable your controller to receive data from external devices, such as bar-code
readers, via an RS232 port. Since there is no Ladder element for this function; you perform it
by storing values into Sls.

Note that the communication settings stored into these Sls only take effect at power-up.

Sl Parameter

141 STX (Start of Text)

142 ETX (End of Text)

Value to Store

0-255(ASCII)

-1: No Start of Text
(not recommended)

0-255(ASCII)

-1: ETX marked by
Length

-2: ETX marked by
'Silence'’

Notes

The STX parameter indicates where the
data block begins.

. Note that the ASCII character '/*
(backslash) cannot be used to
indicate the start of the data
block.

The ETX parameter indicates where the
data block ends. When the ETX is
registered by the function, SB 60 turns
ON.

J If you use an ASCII character
(0-255), note that if this
character occurs after the
Length parameter defined in Sl
143, SB 60 turns ON.

U Selecting -1 causes the function
to use the length of a data




U90Ladder Special Functions

143

144

145

60

61

146

140

SB
60

61

ETX Length or Silent

Maximum Length

Start Address: Receive
Buffer

Number of Bytes
currently in Receive
Buffer

Number of Bytes in
Receive Buffer when
SB 60=1

Copy Data: Format

Start receiving

Description

Data Successfully
Received

Copy Data in Receive
Buffer to Ml Vector

Length: up to 128
Silent: up to 24000

Up to 128

M| Address

Read only

Read only

0: copy each received
byte

1: copy in groups of 4
received bytes.

300

Notes

block alone to determine its
end.

* Selecting -2 causes the function
to use the duration of silent
time following the STX to
determine the end of a data
block.

* This defines both the length of
text, or silence, that signal the
end of text.

. Note that the duration of a
silent 'counter' unit is
approximately 2.509 mS. The
'silent' value should be lower
than the M90 TimeOut value.

* When defined as length, S| 143
cannot exceed S| 144.

U This is the maximum legal
length for received text.

o When the maximum length is
exceeded, the Receive Buffer is
automatically cleared, and SB
60 is turned OFF, enabling new
data to be received.

U This can be used to detect
buffer overflow.

This MI contains the start address for
the vector of registers that serves as
the Receive Buffer.

S| 60 indicates how many bytes of data
are currently in the Receive Buffer.

S| 61 indicates how many bytes of data
are in the Receive Buffer when SB 60
turns ON.

U 0 causes each separate byte to
be copied to a separate register
including STX and ETX.

. 1 causes every 4 bytes to be
copied to a single register,
without the STX and ETX. This
is used when the received data
is in numeric format.

For example 12345 would be
copied to 2 consecutive Mls.
The first Ml would contain 1234,
the second would contain 5.

In your application, use this to call the
function after you have entered all of
the other parameters.

Note that when you run Test (Debug)
Mode, the current value in S| 140 will
not be displayed.

Read only. Turns ON when the ETX condition is registered by

the system.

Write only.

U Turning this SB ON causes the buffer contents to be
copied to the M| vector defined in S| 145. The data will




Special Functions: without Elements

be copied according to the format defined in SI 146.

© If SI 146 is set to 0, this SB can be set at any time.
If SI 146 is set to 1, this SB can be set after SB 60

turns ON.
62 Clear Receive Buffer, . This SB must be turned ON to enable a new message,
Clear Sl 60, or data block, to be received.
Clear SI 61, e Turn this SB ON t ble data to b ived bef
N urn this o enable data to be received before

the maximum length, defined in S| 144, is exceeded.

Note that if no data is received for a period exceeding the M90 TimeOut, you will lose the data
in the buffer.

To see how to use the Communications Utility, check the sample application Read Card -
Display Number Value.U90. This may be found by accessing Sample U90 Projects from the
Help menu.

This application demonstrates how to read a magnetic card number using an "IDTECH" card
reader, then display that number on the M90's screen. The card reader transmits the number
in ASCII characters in this format:

< %?[CR];xxxxx?[CR] > where xxxxx is the card number.

The ASCII character used to mark the Start Of Text (STX) is < ; > (semicolon). End Of Text
(ETX) is marked with the character < ? > .

Since the card number is 5 digits long, the card number is copied to 2 separate Mls. The Mis
are linked to 2 variables that are shown on the M90's screen in 2 separate Displays.

The parameters must be written into their respective operands using one scan condition. For
this purpose, it is recommended to use SB 2 Power-up bit, as shown in the sample application.

ASCII character table

Value Hex Char

32 20 <SPACE>
33 21 !
34 22 "
35 23 #
36 24 $
37 25 %
38 26 &
39 27 '
40 28 (
41 29 )
42 2A *
43 2B +
44 2C ,
45 2D -
46 2E .
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6




U90Ladder Special Functions

55 37 7
56 38 8
57 39 9
58 3A :
59 3B ;
60 3C <
61 3D =
62 3E >
63 3F ?
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F O
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 u
86 56 \Y,
87 57 W
88 58 X
89 59 Y
90 5A z
94 5E A
95 5F _
96 60 <Degree sign>
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C I
109 6D m
110 6E n
111 6F o
112 70 p
113 71 q
114 72 r




115
116
117
118
119
120
121
122
124
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
255

73
74
75
76
77
78
79
7A
7C
AO
A1
A2
A3
A4
A5
AB
A7
A8
A9

AB
AC
AD
AE
AF
BO
B1

B2
B3
B4
B5
B6
B7
B8
B9
BA
FF

STGON T DAY PXx—NSXzg<cTo

HEJUAIK<UVIOEEOY " 5p Vo

<Black box>

Special Functions: without Elements




U90Ladder Special Functions

Copy Vector

Vector Copy enables you to set a range of operands, copy the values of each operand within
that range (source), then write those values into a corresponding range of operands of the

same length (target). You can copy from/to a vector of Ml registers or Database registers by
selecting the appropriate function.

Note that since there is no Ladder element for this function; you perform it by storing values
into:

Sl 141 to determine the source vector,
Sl 142 to determine the length of the vector,
Sl 143 to determine the target vector,
S1 140 to select the type of function. Storing the function number calls the function. In

your application, call the function after you have entered all of the other parameters.

To use Copy Vector:

Set the address of the database register that starts the
source vector by storing & value into =1 141,

ot Ele

storing & value into 51143,

ST \
#5 {5 Bl 51 141 Start of
Wector Source
Setl thlenlength |:|f thé vectar t:;g.f stu:urillﬂg a vaiﬁe into I
Si142,
m
5T \
10 5[ 142 Length of
=y =
. L Yectar
et the address of the Ml that starts the target vectar by

/—’ %‘“H& :

#32

mrs E -

51143 Start of

Wector: Target

into

Sl 140.

Select the function type by storing the function number

#22

| 51140 Select

Function

Function Source Vector, Target Vector,
Number (SI 141) (S1142)

(S1 140)

20 Ml Ml

21 Ml DB

22 DB MI

23 DB DB

Note that when you run Test (Debug) Mode, the
current value in S| 140 will not be displayed.

10



Special Functions: without Elements

Copy Vector: Function Number 22, DB to MI |

(roommmesin |

.register 5 within the Database is
the start of the source vector. ..

T

| DB vector |n |1 |z |3 |4

.. it 10z stored in 51142, both the
zaurce and target vectar will ke 10
registers long. ..

L 320s stored into 51143, M1 32
within the Database iz the start of
the target vector.

I O K 9 3 1 1 X 3 E 3 E 0 N A

Fill Vector

Fill Vector enables you to set a range of registers. The function copies a value from a desired
operand or constant value (source), then writes that value into every operand within the range
(target vector).

You can fill a vector of Ml registers or Database registers by selecting the appropriate function.

Note that since there is no Ladder element for this function; you perform it by storing values

into:

Sl 141 to determine the start of the target vector,

Sl 142 to determine the length of the target vector,

Sl1 143 to select the Fill Value; the register whose value will be written into each register
within the target vector,

S1 140 to select the type of function. Storing the function number calls the function. In
your application, call the function after you have entered all of the other parameters.

To use Fill Vector:

11



U90Ladder Special Functions

et the address of the first register inthe zource vectar
by storing a value into =1 141 .

5T

#h

A B

51141 Start of

Wechor

Function Number Description

(SI 140)

30 Fill Ml Vector
31 Fill DB Vector

Note that when you run Test (Debug) Mode,
the current value in Sl 140 will not be

S142.

et the length of the vector by storing a value inta

displayed.

o Ehe

5T

#10

& B

51142 Length of

Wechor

S1143.

et the Fill Walue by by storing & constant value into

HE

| 51143 Fill' alue

into 51140,

Zelect the function type by staring the function number

b1 Cy| s B S1140 S_EIect
Function
Fill Vector: Function Number 31, Fill DB vector

Sl141: 5
Sl142 10
S1143: 6

Function: Operands

ﬁf 5 iz stored into 51 141 .

¥

i= the

. register 5 within the Database

start of the zource

vector...
—

| DB vector |u |1 |2 |3

—
4]i~|ﬁ|? |a |9 |1n |11 |12 |13|14|15 |1EI
) )

T X

. if 10 iz stored in 51 142
the target vector will be 10
registers long. ..

.t Bis stored into S| 143,
B wyill be copied into every
register from Sto 14.

12



Find Mean, Maximum, and Minimum Values

Special Functions: without Elements

This function enables you to take a vector of registers and find the:

Mean of all the values in the vector,
Minimum value in the vector,
@ Maximum value in the vector.

You can base the function on a vector of Ml registers or Database registers by selecting the

appropriate function.

Note that since there is no Ladder element for this function; you perform it by storing values

into:

S| 141 to determine the start of the vector,

Sl 142 to determine the length of the vector,
S| 140 to select the type of function. Storing the function number calls the function. In

your application, call the function after you have entered all of the other parameters.

The results will be placed in:

@ S| 143: Mean
# Sl 144: Minimum
& S| 145: Maximum

Note that if a remainder value results from the division operation used to calculate the Mean,
that remainder value will be place in Sl 4, Divide Remainder.

To use this function:

=et the address of the Ml that startz the zource vectar
by storing & value inta =1 141 .

e

H N 5L

51147 Stark of
Wechar

Cmlm omd Al F m F A; 1

=et the length of the vectar by storing & value into

S142.
/ﬁ\

n1f A g |51 142 Length of| |
YWechar _

Zelect the function type by staring the function number
imto <1140,

| 51140 5elect
Function

Function Number  Description

(Sl 140)

40 Find Mean, Minimum,
Maximum in
MI vector

41 Find Mean, Minimum,
Maximum in
DB vector

Note that when you run Test (Debug)
Mode, the current value in SI 140 will
not be displayed.

13



U90Ladder Special Functions

| Fihd Mean, Minimum, Maximum of Vector: Function Number 40, Ml vector

. . ...if 4 iz stored in S|
If 10is stored into S1 141, K1 f
10 iz the start of the vectar 142, the wector willbe 4
registers lang. ..

| mivector Jo JaJ ... Jolw]rn]z]3 1 J15 f16 J17 J15 J19 [0 J21 |

‘| Slvector | 143 | 7T | 3 |

GSM PIN Code via Mi

Use this utility to use an Ml vector to supply a GSM modem PIN code. When you use this
function, the controller will look for the number in the Mls, bypassing the PIN code in the SMS
message dialog box.

Note that since there is no Ladder element for this function; you perform it by:

# Storing the start address of the Ml vector needed to contain the PIN into Sl 141,

# Storing 410 into Sl 140 to select the function. Storing the function number calls the
function. In your application, call the function after you have entered all of the other
parameters. Note that when you run Test (Debug) Mode, the current value in SI 140 will
not be displayed.

The PIN code should be called before the modem is initialized; the function should therefore be
called as a power-up task.

Note that if the Mls contain an incorrect PIN code format, the error will be indicated by Error
message #18 in S| 180--lllegal PIN Format.

14



Special Functions: without Elements

GSM PIN Code via MI: Function Number 410
PIM Code: 25434123

5B 2 Power-up - This defines the
bit . . - . . . . .| numhet of digts in A,
| EM EMNO the PN code. EM EMO
This defines a1 5T
the start of : =
#O 51147 Function Ha MO PIN #
the Ml vectar F A B QOperand ’ A B Stark of Vector
that holds the :
PIM code.
EM  EMO EM  EMO
ST 5T
#2545 | A B_I kAl 1 | | #4123 I"‘*" R bl 2
. - [Tresearete ] 4
: digits in the
i et _ Cee e N Tl C
the - EN_EM nLmbEr . o
function. : 5T o
- #410 51140 Function
- = B (=
| S Operand

Interrupt

This function is time-based. You call an interrupt routine by storing 500 into SI 140. The
interrupt function causes:

® The program scan to pause every 2.509 mSec. The interrupt causes the program to stop
immediately without regard to the program scan, even if it occurs in the middle of a net.
# A jump to the net which follows the interrupt. The nets following the interrupt comprise the
interrupt routine. Note that the interrupt routine should be as short as possible, and must
not exceed approximately 0.5 mSec.
® When the interrupt routine is finished, the program continues from where it left off.
Note that the nets containing the Interrupt routine must be the last ones in the program. The
format must be as shown in the example below:
@ Store 500 into SI140 to call the function
@ Jumpto End
@ The nets containing the actual interrupt routine.
Note that when you run Test (Debug) Mode, the current value in SI 140 will not be displayed.

Example

15



U90Ladder Special Functions

5| In this sarmple application, an incrementing counter walue is used to perform a program loop that simulates long scan time.
The interrupt causes the program scan to stop every 2.5 seconds and enter the interrugt rovtine.
During the interrupt routine, the value of 511 "10 ms counter” is compared to 100, When the counter value reaches 100, the
walue is stared in M1 1 and 311 is reset.
YWhen the interrupt routing is complete, the program returns to where it left offfor ancther 2.5 mSec.
Irnportant, vou MUST resetthe PLC after the program is downloaded to enable the Interrupt function!
The Store #500t0 51140 and the "Jurnp to End" WMUST be in different nets. as shown here (nets 4 and &)l
e If Ml 2. the counter presetvalue, is defined as 500, the scan time is about 30-100 ms
wr Re-enter
Progeam
I

g Scan loop, simulating lonc scan §

1 EN END |

> AcB - AMDDE=C Loop - - - - o o .
e L I L | R |
1 2 cournter

E preset

m

ﬁ H }-B e |

| 5] The counter is reset when it s value reaches the presetvalue, causing itto exit the loop

Y 2 EM  EMC EM EMO ——— |

o A>=B . ST ................... "l
g ZA Bﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
M|2c:0unter B ...................................... 3

1; preset [T b e s

| @ This resets SI1"10 ms counter" at Power-up.

3 | 5B 2 Powerup EN  ENO b o I

33 bit ST | 5

ST .
— o R e

b

| 5] Storing 500 into 51140 calls the interrupt function.

v 4 Interrupt }EN O
¥ ST b e -

w500 1, g M0 unction ] - D

Opetand |

i

| o End of normal program.

75

a3 End e e e e

g == i i

s Thig is the interrupt routine. Each 2.5 mSec the interrupt program will cause the scan to stop and perdarm the operation

. helow.

v [ EN  EML EM EMO —— 0 . o .
A=B ST - - F 5
(e i Exit | - - - -

-
m

-

Routine 511 10mS 511 10mS I 1 Time
(st ot ERCEEE . e _
exceed 2.5 M) ' —
mSec) ’WI—B EM EMO Lo ———— K- - ¢ . ...
. ST B I L
511 10mS
:::::::::::::ﬂ ::::::::::::::::::::
s

| o Atthe end of the routing inthe net abowve, the program will continue fram the exact point atwhich itwas interrupted.

m

Load Indirect

Load Indirect allows you to take a value contained in a source operand and load that value into
a target operand using indirect addressing. Note that since there is no Ladder element for this
function; you perform it by storing values into:

@ Sl 141 to determine the data source,

# S| 142 to determine the load target,

# S| 140 to select the type of function. Storing the function number calls the function. In
your application, call the function after you have entered all of the other parameters.

To use Load Indirect:

16



Store the Offset in Wector, Source, in =1 141 .

o

N

g3

| 51141 Offeet in

Wector-Source

Store the Offzet in Wector, Target, in =1 142,

#145

51142 Offzet in
Yector-T arget

Zelect the function type by staring the function number

into 51140,

| 51140 5elect

Function

Special Functions: without Elements

Function
Number (SI
140)

10

11

12

13

Load Indirect: Function Number 12, Sito M

and Sl 142 cortains 145, ..

v

.dhe value currently in
Ml 3 iz loaded into S| 145,

| Mivector |n|1 |2E|4| | Sluector |0 |1 |2 |

The rezult:
=1 145 nowy contains 101 .

Load Timer Preset/Current Value

Offset in Vector,

Source (Sl 141)

Ml
Sl
Ml

S

Offset in
Vector, Target
(S1142)

MI

MI

S

S

Note that when you run Test (Debug) Mode, the
current value in Sl 140 will not be displayed.

This function allows you to take a preset or current timer value and load it into another operand.

Note that since there is no Ladder element for this function; you perform it by storing values

into:

# S| 141 to select the timer; 0-63,

17



U90Ladder Special Functions

& Sl 140 to select the type of function. Storing the function number calls the function. In
your application, call the function after you have entered all of the other parameters.

To use this function:

Function Number Description
Store the number of the timer into S10141. (S1140)
C / f 202 Load Timer Preset
% 5T 203 Load Timer Current
#3 4 Bl 5 T4 Select | Note that when you run Test (Debug)
T e e e e I:tT_II'ﬂEH ” Mode, the current value in Sl 140 will not
elect the function type by storing the function number ;
‘ 05140, be displayed.
oy Timer Resolution (stored into S| 143)
CT Value Resolution
# 202 A B 517140 Select 1 10mS (0.01S)
Function
10 100mS (001S)
100 1000mS (1S)
1000 10000mS (10S)

Load Timer: Function Number 202, Load Timer Preset

Function Operands l/ If 1141 cortains ...
Sh140; 202 *
Sl141: 3
Timer 3's preset value will be
oaded into =1 142,
Timer 3's preset resolution will
be loaded into 51 143,
R agan
MODBUS

MODBUS enables you to establish master-slave communications with any connected device
that supports the MODBUS protocol. Any controller in the network may function as either
master or slave using any of the controller's existing COM Ports.

Unitronics currently supports RTU (binary) transmission mode. Note that M91 models support
MODBUS, M90 models do not.

Since there are no Ladder element for these functions; you perform them by storing values into
Sls in accordance with the tables and figures shown below.

MODBUS Configuration

Before you can run a MODBUS command, you must configure MODBUS parameters for both
Master and Slave devices.

18



Configuration Parameters

Special Functions: without Elements

These parameters configure a controller for MODBUS communications. A device is configured
for MODBUS by storing the value 600 into Sl 140.

To configure a slave device, build a Ladder net that stores the appropriate values into the Sls
according to the following table, and that ends by storing the value 600 into S| 140.

SB 2 Powet-up -
i | EN EMO EM EMO
°T 5T
1 51147 Funchon #1100 51142 Funchion
o B = A, B
Dpetand Dpesand
[— EM EHND EM  EMD
5T . =1
H3 5l 143 Funchion #2 5l 144 Funchon
A B Operand A B Dperand
ENM  END
ST :
3 600 51 140 Function
A B Mumbes

Configures controller for MODBLUS

Parameter Store Function
into SI

Network ID 141 This number identifies the device on the network. You can either
assign an ID via an MI, or directly via a constant number. The unit ID
range is from 0-255. Do not assign the same ID number to more than
one device.

Time out 142 This is the amount of time a master device will wait for an answer from
a slave. Time out units are defined in 10 msecs; a Time out value of
100 is equal to 1 second.

Retries 143 This is the number of times a device will try to send a message.

Maximum 144 This is the maximum time interval permitted between messages. The

Time Delay time units are 2.5 msec. This should be set to 2, setting the permitted
interval to 5 msecs ( n x 2.5 =interval).

Call 140 Storing the value 600 into S| 140 configures the controller for

MODBUS MODBUS. This must be the final parameter stored.

Configuration

19



U90Ladder Special Functions

MODBUS Commands

Before you can call a MODBUS command, you store the appropriate parameter values into the
correct Sls in accordance with the Command Parameters table. After this is done, call the
command by storing the command number into SI 140.

The figure below shows how to implement the MODBUS command Read Output Registers.

VAR Sleree Unit PRIy | Slave: Start
SHE 471 Key H10s . . . FTEPI T
T Metwork 1D ) ) S of Yector
1Pt EN END EN ENO
L i T . BT

:| fi i | [ST747 Funchon | [®70 |4 | [51742 Funchion
'_ A B Operand : A B D pe=tand
Wector Length Master:
L Rt © | Cperandtype
Er ENO EN EMNO

ST : ST
20 Sl 143Function | [ #3 51 144 Funchon
A B Dperared A B O perand
— e - .. .| MODBUS Command E04:
of Wector Fead Output Registers
Bl ENU EN EHU
5T : 5T
#15 |, gL/l 145 Function | [#604 |, p |J 51 140 Function
Dperared _ Hurnber
Command Parameters
Parameter Store Function
into SI
Slave Unit 141 The ID of the slave device containing the data to be read (data
Network ID source).
Slave: Start 142 The start of the vector of operands in the slave. Check the Slave
of Vector Address Tables below.
Vector 143 The vector length.
Length Note ¢ A MODBUS command cannot read/write more than 1900 bit
operands at one time. In addition, 0 is not a legal length.
Master: 144 Store the number that relates to the type of operand you wish to
Operand write to in the master device.
Type MB 1
SB 2
Mi 3
Sl 4
1 9
(0] 10

20



Special Functions: without Elements

T 122
(current)
T (preset 128
Master start 145
of Vector
MODBUS 140
Command

Note ¢ While a master attempts to send a command, SB 63 Function In Progress is ON.
The number of attempts that the master will make is the number in Retries +1,
where '1' is the initial access attempt.

¢ When a master attempts to access a slave device, and the slave does not
answer, SB 66 Function In Progress will turn ON. This bit will remain on
according to the following:
(the number of retries + 1) x (Time Out), where '1' is the initial access attempt.
Note that the Time Out parameter is in units of 10 msec.

MODBUS Command Number

MODBUS Commands U90 Command # (Value to store into Sl 140
Read Coils 601
Force Coil 602
Force Coils 603
Read Output Registers 604
Preset Register 605
Preset Registers 606
Read Output Registers in Float 607
Format

Preset Float Registers 608
Read Input Registers 609
Read Input Registers in Float Format 610
Read Inputs 611
Loopback Test 612

MODBUS Indications: SBs and Sis

SB 66 Turns ON when: Turns OFF when
Functionin Progress « A master Vision e The MODBUS: Configuration is
ShO\;VS'St;IthD(gUS initiates MODBUS activated.
gg:f?grjration communication. e An answer is received from a slave.
* Remains ON during e The TimeOut defined in the
the MODBUS session. Configuration is exceeded.

* Certain Status Messages are given

S1 66 e Automatically initialized to 0 when MODBUS operation is
Status Messages activated.

Shows 'status el O Updated at the end of each attempt to communicate via

master's data MODBUS

requests and the :

replies the master J Indicates status of MODBUS communications, according to the
table below. Note that the current value always shows the most

21



U90Ladder Special Functions

receives from the recent status.
slaves

# Status Message

0 Status OK

1 Unknown Command Number

This is received from the slave device.

2 Illegal Data Address

. Master: an invalid address is found by the master before a data request
is sent to a slave. This may result, for example, when an Ml is used to
provide vector length.

J Slave: The slave notifies the master that the data request command
includes invalid addresses.

3 Slave to Master: lllegal Data Type Quantity
Number of operands requested by user exceeds the maximum
Note ¢ A MODBUS command cannot read more than 124 16-bit integers, 62
double registers, 62 float registers, or 1900 bit operands at one time.
In addition, 0 is not a legal vector length.

4 Master--Time Out
The amount of time the master will attempt to establish a MODBUS session

5 No Communication
The MODBUS session cannot be established.

Note+ Messages 4 & 5. TimeOut and Number of Retries are defined as Configuration
Parameters. A Retry is an attempt to establish a MODBUS session.

If, for example, TimeOut is defined as 2 seconds, and number of Retries as 3:

- the controller will try to establish the session once, and will continue to try for 2
seconds.

- If the first attempt fails, the Status Message value will be 4, Master TimeOut.

-The controller will try twice more, for a total of 3 retries over 6 seconds.

- If all attempts fail, the Status Message value will be 5.

-If any attempt succeeds, the Status Message will be 0.

*6 Master-slave data incorrectly synchronized
*7 Master-slave data incorrectly synchronized
8 Master to application: Illegal Data Type Quantity

Number of operands requested by user exceeds the maximum permitted for
that FB operation in the master.

Note ¢ A MODBUS command cannot read more than 124 16-bit integers, 62
double registers, 62 float registers, or 1900 bit operands at one time.

In addition, 0 is not a legal vector length.

9 Slave ID =0
An attempt does to communicate with Slave ID 0.

*11 Master-slave data incorrectly synchronized

22



Special Functions: without Elements

23



U90Ladder Special Functions

Slave Address Tables

Coils MODBUS Command Number
Pointer Operand type Read Write
Value
From:
0000 MB #01 Read #15 Force Coils

Coils
3000 SB #15 Force Coils
4000 | (read-only) Read-only
5000 (0] #15 Force Coils
6000 T(read-only) Read-only
7000 C(read-only) Read-only
Registers MODBUS Command Number
Pointer Value Operand Register Read Write
From: type size
0000 MI 16 bit # 03 Read # 16 Preset Holding

Holding Registers
4000 Sl 16 bit Registers
5100 ML 32 bit
6100 SL 32 bit
6300 MDW 32 bit
6700 SDW 32 bit
6900 Timer 32 bit
preset
7200 Timer 32 bit
current

7500 Counter 16 bit
7700 MF 0 32 bit
Examples

The examples below show that:
# MODBUS addressing systems start at 1.
# Unitronics PLC addressing starts at 0.

Bit Operands

Read a 10-bit vector of inputs in a slave Unitronics PLC, starting at Input 20, via Read
Coils (Command 601)

@ Unitronics PLC as the MODBUS master

24



Special Functions: without Elements

Store 4020 into Sl 142 (Slave: Start of Vector parameter), 10 into SI 143 (Read:
Vector Length parameter), 9 into S| 144 (Master: Operand Type), and 601 into SI
140. Within the slave PLC, the master PLC will read | 20 - | 29.
¢ SCADA as the MODBUS master
In the SCADA application, set the Slave: Start of Vector parameter to
34021(30001 + 4000 + 20), and the Read: Vector Length to 10, enabling the
master device to read | 20 - | 29 within the slave PLC.

Write a 3-bit vector of outputs in a slave Unitronics PLC, starting at Output 8, via Force
Coils (Command 603)

# Unitronics PLC as the MODBUS master
Store 5008 into SI 142 (Slave: Start of Vector parameter), 3 into SI 143 (Read:
Vector Length parameter), 10 into SI 144 (Master: Operand Type), and 603 into Sl
140. Within the slave PLC, the master will write to O 8 - O 10.
@ SCADA as the MODBUS master
In the SCADA application, set the Slave: Start of Vector parameter to 35009
(30001 + 5000 + 8) and the Read: Vector Length parameter to 3, enabling the
master device to write to O 8 - O 10 within the slave controller.

Registers

Read a 9-register long vector of 16-bit integers in a slave Unitronics controller, starting
at Ml 32, via Read Holding Registers (Command 604)

# Unitronics PLC as the MODBUS master
Store 32 into Sl 142 (Slave: Start of Vector parameter), 9 into Sl 143 (Read:
Vector Length parameter), 3 into SI 144 (Master: Operand Type),and 604 into SI
140. Within the slave PLC, the master PLC will read M| 32 - Ml 40.

@ SCADA as the MODBUS master
In the SCADA application, set the Slave: Start of Vector parameter to 40033
(40001 + 0000 + 3), and the Read: Vector Length parameter to 9, enabling the
master device to read MI 32 - M| 41 within the slave controller.

Note M91 does not support 32-bit registers.
L4

Write a 6-register long vector of 16-bit integers in a slave Unitronics controller, starting
at Ml 32, via Preset Registers (Command 606)

# Unitronics PLC as the MODBUS master
Store 32 into Sl 142 (Slave: Start of Vector parameter), 6 into Sl 143 (Read:
Vector Length parameter), 3 into SI 144 (Master: Operand Type),and 606 into SI
140. Within the slave PLC, the master PLC will write to MI 32 - M| 37.

# SCADA as the MODBUS master
In the SCADA application, set the Slave: Start of Vector parameter to 40033, and
the Read: Vector Length parameter to 6, enabling the master device to write to
MI 32 - MI 37 within the slave controller.

SMS Phone Number: via Ml Pointer

Use this utility to use an Ml vector as one of the phone numbers in the SMS phone book. This
allows you to:

# Enable a number to be dialed via the M90's keypad.

25



U90Ladder Special Functions

& Exceed the 6 number limit of the SMS phone book.
Note that since there is no Ladder element for this function; you perform it by:

@ Storing the start address of the Ml vector needed to contain the phone number into S

141,
@ Entering the character's MI, in capital letters, in the SMS phone book,

‘D @Elé‘: EXM'laLaddel’ @Qislﬂavs 2® va Clickto open U‘:’b|@a|w"%<§

the phone
‘ Ei add Mew Display 3‘3 Add Mew ¥ ariable | @ Ehange Display Mumber Phaak l:l/eNumber | [m attach Variable | |

=101 ]

& SMS Configuration

Click to open

T the phone
12 Hoo!l (dii
2z s ela'm
3 N Y
4 i
5
Ml must be
entered in Description
capital letters . 237 Cruty Electrician
) 045348323 Shift b anager
0 3l
1y
12|
13
14

# Using the index number of that line to call the number, which enables the number in the
MI vector to be called,

# Storing 400 into SI 140 to select the function. Storing the function number calls the
function. In your application, call the function after you have entered all of the other
parameters. Note that when you run Test (Debug) Mode, the current value in SI 140 will
not be displayed.

26



Special Functions: without Elements

SMS Phone number via MI: Function Number 400
Phone nurnber to be dialed: +25454123456

This defines the

This defines the

start of the MI S e A L
number of digits in

vector that halds EN_ENO 1 toe phone b EN__END

the phone numhber . ST ' ST

==L RO N 8 5|141Funm“ﬁ§.\n12 I_A g MITPhore & ]
|\ Operand ) Start of Vectar |

This defines the
+ zign.

EN ENO EN EMO
ST : ST

T AT |, gl MIT+san | [ #2545 . B Ml 2

These are the
digitz inthe phone

TILITET .
ER-C-END EWN EMO

H
R
T
b
=
m
i
=
w
H
=
in
-
L
=
’ =]

This calls the
functian .

T #4000 N SI140Function|
Operand

m

Store Timer's Preset/Current Value

This function allows you to take a value and store it into a timer to change the preset or current
timer value. Since there is no Ladder element for this function; you perform it by storing values

into :

S| 141 to select the timer; 0-63,

S| 142 to determine the timer value,

S| 143 to select the timer's resolution (timer units, or 'ticks'),

S| 140 to select the type of function. Storing the function number calls the function. In
your application, call the function after you have entered all of the other parameters.

Take into account that:

Since you cannot change the resolution of a timer when the application is running, SI 143
is not used in a Store Timer's Current Value function.

A timer's current value can be changed at any time, including when the timer is active.
The new value can be either greater or smaller than the previous value; storing 0 into a
timer's current value stops it immediately.

A change of Timer Preset value without changing the resolution will take effect when the
timer restarts.

Changing the resolution of the timer's preset value does not affect the current resolution;
it is therefore recommended that the resolution not be changed while the timer is active.
The timer value is 14 bits.

To use this function:

27



U90Ladder Special Functions

Stare the number of the timer inta =1 141 .

51 T41 Select
Tirmner

Stare the value to be loaded into S

142.

END-.
ST

#15

mr E |-

51142 Timer
Prezet Yalue

timer irta 51 1435,

Store the value that determines the resolution of the

51143 Timer
rezolubion

#1000 14, B
Select the function type by storing the function number
into S 140,

#2200

| 51140 Select

Function

Function Number Description

(SI 140)

200 Store Timer Preset

201 Store Timer
Current

Note that when you run Test (Debug)
Mode, the current value in Sl 140 will not
be displayed.

Timer Resolution (stored into S| 143)

Value Resolution

0 Maintain Timer Resolution
1 10mS (0.01S)

10 100mS (0.18)

100 1000mS (1.08)

1000 10000mS (10.0S)

Store Timer: Function Number 202, Store Timer Preset

Function Operands
sS40 200

/ It 51144 cortains 3. ..

Sl141: 3
Sl142 13

¥

=143 100

cand S1142 contains 15

and =143 contains 100, ..

¥

Timer 3 will be preset to

15 seconds .

=TT

Square Root

This function enables you to find the square root of a number.

28



Special Functions: without Elements

Since there is no Ladder element for this function; you perform it by storing the number whose
square root is to be calculated into Sl 141.

Store 110 into Sl 140 to call the function. In your application, call the function after you have
entered all of the other parameters.

The results will be placed in:

@ Sl 142. This contains the whole number result.
& S| 143. If the result is not a whole number, this contains up to 2 digits to the left of the
decimal point.

To use this function:

Function Description
Number

Stare the number whose )

sojuare root iz ta be calculated SEiE th'_a WmENG(: (SI 140)

. number inta =1 140,

irto 51149 .
110 Calculate

square root

28 s
A 1141 || 11110’{

Note that when you run Test
(Debug) Mode, the current value in

B i 5I't40 Funcion | SI 140 will not be displayed.
Operand

Results

L1000 =31.62

81142 = 31

81143 = 62

Functions activated by SBs
Convert MB to MI, Ml to MB

An M0 register is built of 16 bits.

Using the MB to MI function, you can convert 16 bits or more into a integer value. Conversely,
you can convert an integer value into 16 bits or more using the Ml to MB function.

Note that if the converted values exceed 16 bits, the function will write the value to consecutive
registers. Any values in those registers will be overwritten.

To apply the functions, use the following System Integers (Sl) and System Bits (SB)

SI Description SB

SI170 Address of Ml SB170 MB to MI
containing integer
value

SI171 Start address of SB171 MI to MB

MB array (vector)

SI172 Amount of MBs

You can use this function, for example to send an SMS when there is a change in the status of
the M90’s inputs:

1. Represent the status of the M90’s inputs using MBs.

29



U90Ladder Special Functions

2. Convert these MBs into an Ml
3. Perform a XOR operation on the result.

When there is a change in input status, the XOR operation will return a value different than 0,
which may then be used to trigger the sending of an SMS.

Examples
Example 1:

1. Store the value 7 into S| 170, 10 into SI 171 and 9 into SI 172.
2. Set SB 170 to ON.

The program will calculate the binary value of a 9 bit array which starts with MB 10. The
resulting value will be placed into MI 7.

Example 2:

1. Store the value 7 into S| 170, 10 into SI 171 and 9 into SI 172.
2. SetSB 171 to ON

The program will calculate the binary value of the value contained in Ml 7. The result will be
scattered on a 9 bit array which starts with MB 10.

Copy MI to Output vector, Input vector to Ml

Using this function, you can:

# Copy a vector of Inputs (I ) to a register.
@ Copy a register value to a vector of Outputs (O).

Note that an M90 register contains 16 bits. If the converted values exceed 16 bits, the function
will write the value to consecutive registers. Any values in those registers will be overwritten.
When a register value is copied to outputs, the function will store the register value in
consecutive outputs.

30



Special Functions: without Elements

Input to Register

Sl Description SB Function
SI170 Address of Ml SB172 | to MI
containing integer
value
S1171 Start address of SB173 Ml to O

bit array (vector)
SI172 Amount of bits

Example: Input to MI, SB 172

1. Store the value 7 into SI 170, 2 into SI 171 and 4 into SI 172.
2. SetSB 172 to ON.
The program takes the status of 12 to 15, and changes the status of the respective bits in Ml 7.

Bits in the target register that are outside of the defined range are not affected.

If 2iz stared into =1 171, and 4 inta S|
172, the input vectar begins &t Input 2
and iz 4 inputs long.

I Inputs

ﬁ|?|a|9|1n|

If Inputz 2 &3 are OFF and 4& 5

are Ob, the respective bits in MI 7 SigLnEiﬁgnt
change status accordingly . Bit

| MI 7 |n|1|1|1

Example: Ml to Output, SB 173

1. Store the value 7 into Sl 170, 3 into SI 171 and 7into SI 172.
2. Set SB 173 to ON.

The program will take the binary value of the MI 7, and change the status of the respective
outputs in the defined vector, O3 to O7.

Addressing: /0 Expansion Modules

Inputs and outputs located on I/O expansion modules that are connected into an M90 OPLC
are assigned addresses that comprise a letter and a number. The letter indicates whether the
I/O is an input (1) or an output (O). The number indicates the 1/O’s location in the system. This
number relates to both the expansion module’s position in the system, and to the position of the
I/0O on that module.

Expansion modules are numbered from 0-7 as shown in the figure below.

Adapter .
— Expanszion module
2 6 7 idertification number

31



U90Ladder Special Functions

The formula below is used to assign addresses for I/O modules used in conjunction with the
M90 OPLC.

X is the number representing a specific module’s location (0-7). Y is the number of the input or
output on that specific module (0-15).

The number that represents the I/O’s location is equal to: 32 + x*16 +y

Example
& |nput #3, located on expansion module #2 in the system, will be addressed as | 67, 67 =
32+2+16+3
# Output #4, located on expansion module #3 in the system, will be addressed as O 84, 84
=32+3+16 +4.

EX90-DI8-RO8 is a stand-alone I/O module. Even if it is the only module in the configuration,
the EX90-DI8-RO8 is always assigned the number 7. Its I/Os are addressed accordingly.

Example

@ |nput #5, located on an EX90-DI8-R0O8 connected to an MO0 OPLC will be addressed as
1149,149=32+7+16+5

Database: Access indirectly addressed registers

The M90 OPLC has a special memory area containing integers that are function as a database.
These integers are not related in any way to system or memory integers. Within the database,
you can access and use integers 0 through 1023 via Sl 40 and Sl 41.

Note that when you run Test (Debug) Mode, the current value in SI 140 ( Function Number) will
not be displayed.

Writing Values

1. Use Sl 40 Database Index to access a particular Ml.
For example, to access MI 2 you store the number 2 into S| 40.

Ml Number
1]
The value '2'is stored in 1
S1 40 Database Index 2
==
Ml 2 isnow the current
Database integer o

2. Use Sl 41 Database Value to write a value into Ml 2.
For example, you can store a number value into Sl 41.

32



Special Functions: without Elements

Stare the numbier 20 into

MI Number
Sl 41 Datab ase Value 5
20 i written into the current 1
Database Integer, k| 2 > E
4 -

Reading Values

When you use Sl 41 Database Value in your program, the program actually reads the Ml that is

referenced by Sl 40 Database Index.

MI Number
1]

Wihen S1 41 Database Value
isusedin the program

The program reads the value

) currently contained in M1 2

»

1
z
=<

1023

Examples
Example 1: Write

In the net below, 0 is stored in SI 40 when the MO0 OPLC is powered up. This means that
integer 0 is now the current ‘database’ integer.

SB 2 Power-up -
bit .

EM EHO
5T

#0 | {51 40 D atabase

Index

In the net below, the analog value contained in S| 20 is stored in Sl 41 every second. According
to the net above, the current ‘database’ integer is 0. The analog value is therefore stored in
integer 0.

‘5B 3 1 zecond -
pulze

EM ENO
ST

" alue

51 20 Analog |k EI_'&' BH

51 41 Databaze

" alue




U90Ladder Special Functions

In the next net, the value in Sl 40 is incremented by 1every second, changing the current
database integer. This means that the first analog value will be stored in integer 0, the second
analog value in integer 1, and so on.

‘5B 3 1 zecond -

pulze
|} EMN EMO
. AADDE =L
" [51 40 Databasze 51 40 D atabasze
. & CH
Index Index
#1 | |n

Example 2: Read

In the first part of the net below, 10 is stored into Sl 40. Integer 10 is the ‘database’ integer. In
the second part of the net, the value in S| 41 is compared to the value in integer 4.

The value in Sl 41 is the value actually in integer 10—the current database integer.

EM ENO EM ENO |—
5T : &=B -
10 r g |51 40 Databaze [SI'41 Database s
[ndex ) Y alue
Ml 4 Quantity |10

34



Deleting SMS messages

In order to delete SMS messages from a SIM card, turn SB 193, Delete SMS Messages, ON.
When used alone, SB 193 will delete 20 messages from the SIM card.

Using SB 193 in conjunction with SI 187, Number of SMS messages to be deleted, enables

you to delete up to 30 SMS messages.

MEB O Delete -5B 193 Delete -
Mezzages -5MS meszsages -
S . from SIM card .
| | EM ENO {3
ST :
#30 Hry I{ 51 187 Mumber
of SMS

Immediate: Read Inputs & HSC, Set/Reset Outputs

You can perform the following immediate actions, without regard to the program scan.

# Set SB 116 to immediately read the status of specific inputs and high-speed counter
values. When SB 116 turns ON, the current input value written into linked SBs, current

high-speed counter values are written into linked Sls.

® Set the appropriate SBs to immediately clear high-speed counter values.
# Set the appropriate SBs to immediately Set/Reset Outputs.

Note that:

# Values are stored in linked SBs and Slis according to your controller model.

# |n the Ladder, inputs and high-speed counters retain the values updated at the beginning

of the scan. Only the linked operands listed below are immediately updated. However,
immediate changes in output status are immediately updated in the Ladder.

Use the table below to determine which actions, SBs, and Sls are relevant to your model
controller.

M90 Model

M90-T

M90-T1
M90-T1-CAN

M90-19-B1A
M90-R1
M90-R1-CAN
M90-R2-CAN
M90-TA2-CAN

Input

#

HSC #

HSC

HSC

HSC

Value
stored
in

S| 44

S| 44

Sl 44

HSC # Immediate Output Set/

Clear

HSC SB 117

HSC SB 117

HSC SB 117

#

None

None

Reset
via:

SB 120
SB 121
SB 122
SB 123

35



U90Ladder Special Functions

M91-19-TC2 I 0 SB HSC SlI44 HSC sB 117 OO0 SB 120
M91-19-UN2 I 1 110 0 SI 45 0 sB 118 O 1 SB 121
M91-19-T1 I 2 SB HSC HSC O 10 SB 122
I3 111 1 1 O 11 sB 123
SB
112
SB
113
M91-19-R1 I 0 SB HSC SlI44 HSC sB 117 OO0 SB 120
M91-19-R2 I 1 110 0 S1 45 0 SB 118 O 1 SB 121
M91-19-R2- I 2 SB HSC SI46 HSC sSB 119 O 2 SB 122
CAN I3 111 1 1
I 4 SB HSC HSC
5 112 2 3
SB
113
SB
114
SB
115
M91-19-T38 I 0 SB HSC Sl 44 HSC SB 117 OO0 SB 120
1 110 0 Sl 46 0 sSB 119 O 1 SB 121
I 2 SB HSC HSC O 10 sSB 122
I3 111 1 1 O 11 sB 123
SB
114
SB
115
M91-19-UA2 I 0 SB HSC Sl 44 HSC sSsB 117 OO0 SB 120
I 1 110 0 0 01 SB 121
SB
111
M91 19 T2C I 0 SB HSC SlI44 HSC sB 117 OO0 SB 120
1 110 0 S1 45 0 sSB 118 O 1 SB 121
I 2 SB HSC SI46 HSC SB 119 O 10 SB 122
I3 111 1 1 O 11 sB 123
I 4 SB HSC HSC
5 112 2 2
SB
113
SB
114
SB
115
M91_19_ R6C | O SB HSC SlI45 HSC sB 118 O 0 SB 120
1 112 0 0 01 SB 121
SB o 2 SB 123

'Long' Integer functions

This special function is supported by M91 controllers alone(OS 91). Note that constant values
are not supported; only M| value may be used.

Long integer functions are activated via SB82. A long integer function uses adjacent Mis in
performing calculations and storing results. When SB82 is used as the activating condition for a
Math, Compare, or Store function, selecting a single Ml as an input value causes the following
MI to be included with the input. The selected Ml serves as the 'low byte' of the long register,
and the following Ml serves as the 'high byte'. The same logic holds for the output value.

In the example below, the values in MIO and MI1 provide the 'A" input, MI2 and MI3 provide the
'B' input. Note that MIO is the 'low byte' of input 'A" and MI1 is the 'high byte'

36



Index

The result is stored in MI 10 (low) and 11 (high).

Set 5B 52 in order to activate the
function; it is reset automatically by
the application.

SB 41 Kep#liz- SBEB2 Long
prezzed - Integer funchion -
| P {5} EN_ END
' 14464
M0 &
The 'long' i Ml 10
function
takes twao
adiacent Mz —
ﬂ'é & M2 MI1 1
contains "1

In the Compare function below, MI 10 contains 100, MI 11 contains 3, Ml 12 contains 100, and
MI13 contains 0, making the comparison true. Note that to activate Compare functions, SB 82
must be on the left ladder rail. This is not so for Math and Store functions.

=B52 must he L e,
on the laclder SEEZ Long - - - - - - o oo ME 0
rail--Campar e integer function - e
functions oy L

{5} EM EMO [}

The 'long' R 2 Co Co

fnction MI11 =ze the autput

takes two condition ta

adigcert M= activate lacdcer
logic.

You can use the Store function in two ways; these can enable you to display long values on the
LCD. Note that in order to display long values, the variable used to represent the 'low' byte
should be configured to show leading zeros. Display is restricted to positive values within the
range of 0-99,999,999.

Setting SB82 before a Store function causes the 'A' value to be treated as a 32-bit 'long' value;
the long value is then broken up into the 2 16-bit MIs constituting the 'B' value.

37



U90Ladder Special Functions

5B 41 Kep #1iz- 5B 82 Long

prezzed - integer function -

| P I { S j EM  EMO

R ﬁ I T
Setting SBE2 before a Store TIET bl 3
function causes the '&' value toke A B
treated as a 32-bit long' value; the
ong walue iz then broken up into /‘: ,1
the 2 16-hit Mz constituting the
B value. MO & K1 MG & hil4

Resetting SB82 before a Store function causes the 'A’ value to be treated as a 2 16-bit values;
the values are then stored as a long 32-bit 'B' value.

Linearization

Linearization can be used to convert analog values from 1/Os into decimal or other integer
values. An analog value from a temperature probe, for example can be converted to degrees
Celsius and displayed on the controller's display screen.

100

g
=

0 1023 y

Linearize values for Display

Note that the linearized value created in this way may be displayed-- but the value cannot be
used anywhere else within the project for further calculations or operations.

You can enter an Analog value, such as temperature, via the M90 keypad, then convert that
value into a Digital value for comparison with a digital value from a temperature probe by
selecting Enable Linearization in the linked Variable.

This conversion process is Reverse Linearization.

To enable Analog to Digital conversion:

38



Index

1. Create a Display for entering the analog value.
2. Create an Integer Variable.

3. Select keypad entry and enable linearization.

4. Enter the linearization values for the x and y axes.

Temp Set Point Entry

nkTo | [

Te erature Set Point

According to the above example:
® A temperature entry of 100° C will be converted to 1023 Digital value.
® A temperature entry of 50° C will be converted to 512 Digital value.

Linearize values in the Ladder

You can also linearize values in your Ladder and display them on the M90's LCD.

1. Inyour Ladder project, use Sl 80 - 85 to set the (x,y) variable ranges. Use SB 80 to
activate the Linearization function.

39



U90Ladder Special Functions

System Integers
Op | Addr |InLlse|‘% F'u:uwerLlp| Yalue |S_I,Im|:u:u|

5l an O Linear conversion: #1 walue
5l a1 O Linear conversion: 2 value
Sl a2 | Linear conversion: yl value
Sl a3 [ Linear conversion: y2 value
Sl a4 O Linear corvversion: # [input] walue
Sl a5 O Linear corvversion: Y [result] value

The linearization values created here can be displayed by linking S| 85 to a Display; the value
can be used elsewhere within the project for further calculations or operations.

LASIFAS N2 B | inearization

—Wariable Type Link Tor
¢ Bit [on/off] '

* integer [Murnenc waluel Lirk To S| 85
= Tirner

i Time Functions
 List Linear conversion: v (result) value

i Date & Time

Example: write the variable ranges into S| 80 - 83, then writing an analog input into S| 84:

40



Index

1 o
*r EM  EMO
5T
#0 Hr 51 20 Linear
corversion: ®1
g
2 EM EMO
¥ 5T
B1023 A 51 81 Linear
CONVETSION: K
g
3 o
¥ EM  EMO
5T
#0 r 51 82 Linear
corversion: vl
s
4 o
¥ EM  EMO
5T
100 Hr 5183 Linear
CORVErSIon: U2
s
5 o
3 EM ENO
5T
Ml 23 Input Hr 51 84 Linear
Yalue from 1/0 CONVETZION, &
s
G F SBE1 Alwayz1 -5B 80 Activate -
i - linear function -
| PR
. L7

Shift Register

You can use the following Sls and SBs to perform Shift Left and Shift Right Functions.

Si
87
88

SB
87
88

Symbol

Shift Value
Shift By

Symbol

Description

bit).

Shift Left
Shift Right

Example : Shift Left

To shift the number 64 left by 1 bit:

This register contains the number to be shifted.

This register contains the number of bits to be shifted (Default is 1

41



U90Ladder Special Functions

1. Use a Store function to write the number 64 into S| 87.
2. Use a Store function to write the number 1 into Sl 88.
3. Turn SB 87 ON.
Once the function is performed Sl 87 will contain 128.
In binary:

Start value: 0000000001000000 =64
After Shift Left:  0000000010000000 =128

Example : Shift Right
To shift the number 64 right by 1 bit:

1. Use a Store function to write the number 64 into SI 87.
2. Use a Store function to write the number 1 into Sl 88.
3. Turn SB 88 ON.

Once the function is performed Sl 87 will contain 32.

In binary:
Start value: 0000000001000000 =64
After Shift Right:  0000000000100000 =32

Display Integer values as ASCII or Hexadecimal
You can:

#® Display the values in an Ml vector as ASCII characters.
# Display a register value in hexadecimal format.

To do this, attach a numeric Variable to a Display. The variable uses linearization to display the
value(s) in the desired format.

Note that non-supported ASCII characters will be shown as <space> characters.
ASCII -Hexadecimal character table
Vector as ASCII

When the application shown in the example below is downloaded, the ASCII characters 'Hello'
will be displayed on the M90 screen when Key #3 is pressed.

1. Create a Variable Field in a Display, then attach a Variable.

Mate that the number of characters in
the field iz equalto the length of the
Ml vector containg the characters.,
Sayrremo

=l
‘Status: 'EE TS I

42



Index

2. Define the Variable as shown below.

Link to the operand whose current
value ‘paintz’ to the first Mlinthe vector
halding the A=Cl values.

: Link Tu:\/
={¥ Intager [Mumenc value] ik T M| 78
 Times M IR

£ Time Funchons | |
Lt | wariable Faointer |

“fariable
—

" Data & Time

Enable Lineatization.

‘Yanisble infamation
Eaormat |
F Laadng? = Enable Ineanzation
e Digplay Enter 1 for this
™ Keypad Eriy l_ parameter .
I Sien with elear fisd b
—Entrp bmite———————————— 0 -q__-_,,ra:
r" E mabie fnrite l
Min Erter O far these - Ml Yalus
Wax |' 3 parameters . ] I

EINN |

3. The Ladder net below sets the Variable pointer and stores ASCII values into the Ml
vector.

43



U90Ladder Special Functions

|SB 43 Kep $31z . C o . C o . . . .
peszed - o - o - s . "o
I EW  ENO o [
This Stare function : g1 . .
causes Ml 28, which |
iz linked to the L

Linearized Yariahle,
to point st MO, the . k B

o
m
=
o
s
T3
o
-3

firt Ml in the vectaor EN__END EN_ENO
to be displayed. ’ af ’ 51
1 Rz I O Dicplay | w101
[ a o e ]| e o
The A4=ClI
character values L,
are stored into the ; EN ENO N ENO
rest of the Mz in ST ST
the vector . -
#1108 " El-| Ml 2 || #1708 |—A B Mi 3

When the application
uzed in thiz example iz
dovvnioaded, the &S|
characters 'Hello' will be
dizplayed.

Register Value in Hexadecimal

When the application shown in the example below is downloaded, the hexadecimal value of 63
will be displayed on the M90 screen.

1. Create a Variable Field in a Display, then attach a Variable. Note that if the field is too
short, only the right-most characters are displayed. For example, the hex value 63(3F)
cannot be shown in a field one character long.

The field may not contain more than 4 characters.

Hexade cimal \
Hex Value: ####

44




Index

2. Define the Variable as shown below.

Hesx ling Link to the operand whose current
Zelect value you want to dizplay in hex format.
Integer

Yariahle

anable Typs
it [ondalf]

* Inbeger [Mumen: value] {
A ko |
I

— Link Tex

= Time Furictions
Lt

Hex values are automatically
dizplayed with leading zeros . Enazhble Linearization.

Forrmat | s E y s
v Enable fneanzation
[T Leading Zeros
y | Enter 2 far this
K fnkg i - parameter .
[0 Stat with elear feld [
— E iy limits , ¢_,y/
I_ __r = '_._; |i'| 1 ! * L
Min || Enter O forthese W Ve —f—
Wiy 3 parameter s . 0 ] E
I
3. The Ladder net below stores the value into the MI.
SE 43 Kep H3 iz
pressad
Thiz Stare function o 3l SEND
places the value 63 ™.
into Ml 25, HES L B Mi 28
T
When the application
uzed in thiz example iz
dovvnloaded, the hex
value iz displayed.
Index
3 C
32-bitlong values ..........ccccoeceveiiiienenne 36 COMMUNICAtIONS ...ccoviiieiiiiiee e 5
A COMPArE ....eeveiiiiie e 36
ASCH e, 7,42 convert MB-Ml...........ooooveiiiiiiiieeeee, 29
AVETagE ....oooiiiiiieiiiieee e 13 (07070} VAV =Tox (o] SR 10, 30

45



U90Ladder Special Functions

D

Database .......ccooooveviveiiieei e, 32
DiSPlay .....cvveeeeiiiieeeeee 42
Display variable data ...........ccccocceeeeniinneen. 42
F

L7210 (0] (PR 4
Fill VECIOT ... 11
FiNd .o, 13

Functions4, 5, 10, 11, 13, 15, 27, 28, 30, 32,
36, 41

G

GSM.ii 14
H

Hexadecimal...........ooocviiiieieeiiieeeee, 42
HMI Lo 25
NSC et 35
|

O e 30, 35
indirectly addressed registers.................... 32
INPUL ... 30, 35
K

Keypad.......ccceeieieieiiieeee e 25

L

Linearization.........cccceeeeeeeeeeeieeieieeeeeeeeeeeen, 38
[0 = To [R T N 16, 17
LONG -t 36
M

Math ... 36
Math Functions ...........cccceeeeeeiiiiinnnnn... 4, 36
Maximum ... 13
MEaN ... 13
Memory Integer........ccccceeiiiiiiiiiiieieeeee 36
Miniumum ... 13
g pToTe =10 o T 14, 35
(o)

OUPULS .. 30
P

PIN code .......cooiriiiii e, 14
S

Shift Register ..., 41
SMS ..., 5, 25, 35
StOre oo 27, 36
Store Direct........coooovviiiii 27
T

TIMEIS oo 27

46



	Special Functions: without Elements
	Functions activated by SI 140
	A*B/C
	Communication Utilities
	ASCII character table

	Copy Vector
	Fill Vector
	Find Mean, Maximum, and Minimum Values
	GSM PIN Code via MI
	Interrupt
	Example

	Load Indirect
	Load Timer Preset/Current Value
	MODBUS
	MODBUS Configuration
	MODBUS Commands
	MODBUS Indications: SBs and SIs
	Slave Address Tables
	Examples

	SMS Phone Number: via MI Pointer
	Store Timer's Preset/Current Value
	Square Root

	Functions activated by SBs
	Convert MB to MI, MI to MB
	Copy MI to Output vector, Input vector to MI
	Addressing: I/O Expansion Modules

	Database: Access indirectly addressed registers
	Writing Values
	Reading Values

	Deleting SMS messages
	Immediate: Read Inputs & HSC, Set/Reset Outputs
	'Long' Integer functions
	Linearization
	Linearize values for Display
	Linearize values in the Ladder

	Shift Register
	Display Integer values as ASCII or Hexadecimal


	Index

