
Telephone: 01480 395256
www.i4automation.co.uk
sales@i4automation.co.uk

Serial Communications Made Easy

It is frequently convenient to have any two devices communicate via a serial link as
opposed to connecting them together using thirty or upwards digital IO, along with all

of the wiring grief such a solution creates. Invariably these devices do not 'speak' the
same language so it is necessary for one of the devices to mimic the other language,

which involves assembling long strings of data into registers, converting ASCII to

binary, calculating checksums and finally transmitting the data in the vague hope
there will be some response from the other device, all assuming you got the wiring

correct in the first instance.
Unitronics engineers have worked hard to reduce the pain involved in serial

communications by producing a function block that allows you to configure a message

using a comprehensive set of pre-defined conversion and calculation tools. The net
result is a neat little box in the middle of your program that sends out a question and

returns the answer to a place of your choice.
In it's most simple form the program consists of three lines of logic, the first line
simply initialising the COM port and defining the protocol name while providing a

'Busy' signal and a status register for error codes. Here we are talking to an XYZ
robot.

Having set up the COM port we then transmit the message that has been pre-

assembled by the SEND function block.

The PLC then monitors the COM port for a reply from the XYX robot and disassembles

the message to place only the required data where you want it.

http://www.i4automation.co.uk/

Telephone: 01480 395256
www.i4automation.co.uk
sales@i4automation.co.uk

The really NEAT bit of this message exchange is what happens inside the PROTOCOL

SEND & PROTOCOL SCAN function blocks. This is where the message strings are

assembled and disassembled with ease because we use the pre-defined conversion
and calculation tools.

What does a message string normally consist of?

Start transmission | Fixed command | Variable data | Checksum |End transmission

Take the command string needed to change the program number on a Janome robot,

it is shown below.

The first three characters consist of the start code followed by a two character

command code $R1. Double click on the PROTOCOL SEND box to open the message

definition dialog box and then enter these as fixed values into the message string as
shown.

http://www.i4automation.co.uk/

Telephone: 01480 395256
www.i4automation.co.uk
sales@i4automation.co.uk

The next four characters represent the program number but the operator will only

type 76 into the program number register, so we now have to convert one register
into four characters, how? Create/Edit Variable and select it from the drop down box!

Then all that is left is to calculate the checksum and add in the end of transmission
character, there are a number of algorithms for calculating the checksum (as shown)

which in this case is a simple SUM, which bytes are summed being specified by the
offsets.

http://www.i4automation.co.uk/

Telephone: 01480 395256
www.i4automation.co.uk
sales@i4automation.co.uk

Select a carriage return (CR) as being the end of transmission character.....

http://www.i4automation.co.uk/

Telephone: 01480 395256
www.i4automation.co.uk
sales@i4automation.co.uk

.... and the whole message comes together in a simple to use function block!

http://www.i4automation.co.uk/

Telephone: 01480 395256
www.i4automation.co.uk
sales@i4automation.co.uk

The device on the receiving end of the transmission will reply with an

acknowledgement or data depending on the message type. This reply will be in a
similar format to the transmitted message and the PROTOCOL SCAN function block
will disassemble this reply in much the same way as the PROTOCOL SEND function

block assembled it.
Serial communication messages written in a modern PLC often take up to 40-50 lines

of code to assemble, convert and transmit, clogging up the memory and distracting
from the original objective of controlling the machine. Using a Unitronics function

block not only makes the whole process simpler and easier to construct but it removes

the clutter of incidental code leaving the control program nicely structured.

http://www.i4automation.co.uk/

