PID Server

28/9/05

Table Of Contents

How Auto-tune works	3
Vision Auto-tune	3
Auto-tuning with PID Server (Vision)	4
Older PID Server Applications	6
Controlling the Physical Output	7
M90/91 Auto-tune	9
Auto-tuning with PID Server (M90/91)	9
Controlling the Physical Output	11
PID Server Features	13
Import Operand Addresses	13
Saving File Parameters	13
Zoom	13
Increase/Decrease Display View Size	14
Export	14
Comments	
What's this ?	14

The PID Server PC utility enables you to auto-tune PID loops for both the Vision and M90/91 controller series. Although it is installed as part of the VisiLogic/U90 Setup, PID Server runs independently of other Unitronics software.

How Auto-tune works

The PID Server utility tunes a PID loop by temporarily disabling the PLC's PID function, and tuning the loop while the PC controls the PID output.

To enable a PID loop to be auto-tuned:

- The controller must be connected to the I/O module whose output feeds energy into PID system.
- The PC running PID Server must have an established communication link to the controller.
- The PID Server parameters must be linked to the same operands linked to the PLC's PID function.
- **Note** PID Server will only work with Vision 3.73 and U90 3.70 and higher projects saved with the most current version of VisiLogic. To update older projects, open them with the current VisiLogic version and save them.

Vision Auto-tune

Before a PID loop can be auto-tuned:

- The OPLC must be connected to the I/O module whose output feeds energy into the PIDcontrolled system.
- The OPLC must be installed with a Ladder application that **contains a PID function; the function must be activated by an MB that is used** <u>only</u> for that purpose. When the loop is auto-tuned, the PID Server utility uses this MB to disable the PLC's PID function.
- The PC running PID Server must have an established communication link to the controller.
- The PID Server parameters must be linked to the same operands linked to the OPLC's PID function.

Auto-tuning with PID Server (Vision)

Start PID Server from:

 within VisiLogic via the menu bar, Tools> PID Server, or

- within Windows via Start>Programs>Unitronics> PID Server.

- 2. Click on the New File icon to create a new PID loop Auto-tune file.
- Locate Loop Properties in the lower right-hand part of the screen. Link all of the parameters to the same operands used in the PID function within the Ladder application. To link a parameter, click on the Address field and select the desired address.

You can also import operand addresses.

	Loop Pro	perties				
	Visible	Function	Operand Addr	ÚÚ	•	Description
	~	SP	м	1	1200	Set Point - the target value
	~	PV	MI	0	891	Process Value - the PID input
	~	CV	MI	2	302	Control Value - the PID output
_		ST	MI	4	0	Sample Time - defined in units of 10 mSec .Recomm
			MI	5	0	Proportional band - defined in units of 0.1% (P gain)
Click	the Ad	dress fiel	MI	6	v 0	Integral time - defined in units of 1 second (I gain)
then	on the	drop do w		G	0	Derivative time - defined in units of 1 second (D gain)
arro	w that a	appears.	M	7	h 0	Input Range - Process Value Low limit.
- CIICK	ane des	sirea	MI	8	✓ 0	Input Range - Process Value High limit
auui	633.		MI	10	0	Output Range - Process Value Low limit
_		er nign	MI	11	0	Output Range - Process Value High limit
		CV(p)	MI	12	0	Control Value CVp
		CV(i)	MI	13	0	Control Value CVi
1		CV(d)	MI	14	0	Control Value CVd
		RST Intgrl	MB	0	0	Reset integral accumulated error; Siet to clear
		Enable PI) MB	1	0	Enable PID Bit (in ladder)
		Rev Actio	n MB	2	0	0: Reverse(Control type Heating) 1: Direct(Control typ
		Tune para	mis MI 4	00	0	Auto-tune parameters, 32 MIs

• Note that the Enable PID bit must be the same MB used to activate the PID function within the Ladder application.

In addition, note that PID Server uses the 32-bit Auto-tune Parameter vector to store values. Do not allow your application to overwrite the vector.

	Loop F	roperties					
	Visibl	e Function	Operan	d Addr	- มีม์		Description
_		SP	M	1	1200	Set Point	- the target value
	V	PV	MI	0	891	Process	Value - the PID input
The percenter links	V	CV	M	2	302	Control V	alue - the PID output
must be identical		Кр	MI	4	0	Proportio	nal band - defined in units of 0.1% (P gain)
		Ti	M	5	0	Integral ti	me - defined in units of 1 second (I gain)
		Td	MIE		• 0	Derivativ	e time - defined in units of 1 second (D gain)
		SpPv-High	MI G		000	Input Ran	nge - Process Value High limit
	1 T	SpPv-Low	ML o	И	5.0	Input Ran	nge - Process Value Lovy limit
Enable PID MB	1 T	CV-High	M	10	1000	Output R	ange - Process Value High limit
	1 T	CV-Min	M	11	0	Output R	ange - Process Value I nyv limit
		RST Interl	MB	2	0	Reset into	erral accumulated error: Set to clear
	H H	Enable PID	MB	50	0	Enable Pl	D Bit (in ladder)
		ETHING THE	mb			Endiolo I I	b be (initiadue)
PID TOGGLE	H nun						
	🐡 P ID						
Set Point - the Control Value -	Params	Func)perand .	Address	۰	Format	Description
· · · · · · · · · · · · · · · · · · ·		PV	MI	0		DEC	PID-PV
MO H H H		SP	MI	1		DEC	Set Point - the target value
PID-PV P		ST	MI	3	10	DEC	Sample Time - defined in units of 10 mSsc (Recomme
		Кр	MI	4		DEC	Proportional band - defined in units of 0.1% (P gain)
Beserved for		Ti	MI	5		DEC	Integral true - defined in units of 1 second (I gain)
		Td	MI	6		DEC	Derivative time - defined in units of 1 second (D gain)
		Reserved	MI	7		DEC	Reserved for future use
		SpPv-High	MI	8	2000	DEC	Input Range - Process Value High limit
		SpPv-Low	MI	9	0	DEC	Input Range - Process Value Low limit
		Cv-High	MI	10	1000	DEC	Output Range - Control Value High limit
		Cv-Low	MI	11	0	DEC	Output Range - Control Value Low limit
		Reserved	MI	12		DEC	Reserved for future use
		Direct	MB	1	RESE	Т	0: Direct(Control type Cooling) 1: Reverse(Control type
		RST Intgl	MB	2			Reset integral accumulated error; Set to clear
		Ctrl Ntype	MB	3			Reserved for future use
		CV	MI	2		DEC	Control Value - the PID output
		Ch.H - 1	6.41	20		DEC	C
			MI	20		UEL	Control Value LVp/[LVp+LVI+LVd]
			MI	20		DEC	Control Value CVp/(CVp+CVi+CVd) Control Value CVi/(CVp+CVi+CVd)

- 4. From the Connection menu, click OPLC model, and then select your controller type.
- 5. From the Connection menu, click Communication PC Settings, and select the appropriate settings.
- 6. Click the Auto-tune icon. The Stages box opens.
- 7. Click on the drop-down arrow to select the number of desired Stages, which is the number of samples that Autotune will use in order to analyze the system.

**	Auto Tune Parameters	×	
٦	Select Number Of Stages		
	1 Stages	•	
L	1 Stages 2 Stages		
	3 Stages 4 Stages	è	
	6 Stages 7 Stages		
	8 Stages		

 Click OK; the PID Server utility begins to run. Note that by checking the Visible option in Loop Properties, you cause PID Server to display a color-coded graphical representation of the Auto-tune process.

Older PID Server Applications

AutoTune Algorithm is a feature added with PID Server V4.00.

Type A

Previous to V 4.00, PID Server used Type A to tune all PID loops.

 Type B (default)
 When this algorithm runs, PID server uses a vector 32 MIs long to store Auto-tune Parameters. Do not overwrite this vector in your application.

						🔳 🗖 🔀
AutoTune Help						_ 8 ×
AutoTune Algorithm: Type B	3 - (10	00) - +	Vertical [100	0) - +	🔯 Tell (Us 😰
Start AutoTune	Pro	operties				
Type	Asible	Function	Operand	Address	30	Description
	Z	SP	MI	0	0	Set Point - the target value
	~	PV	MI	0	0	Process Value - the PID input
Selecting Type B	~	CV	MI	0	0	Control Value - the PID output
causes the Auto-tune		ST	MI	0	0	Sample Time - defined in units of 10 mSec .Recomm
Parameters property to		Кр	MI	0	0	Proportional band - defined in units of 0.1% (P gain)
display.		Ti	MI	0	0	Integral time - defined in units of 1 second (I gain)
		Td	MI	0	0	Derivative time - defined in units of 1 second (D gain)
		SpPv-Low	MI	0	0	Input Range - Process Value Low limit
		SpPv-High	м	Ō	Ō	Input Range - Process Value High limit
		CV-Min	MI	0	0	Output Range - Process Value Low limit
		CV-High	MI	0	0	Output Range - Process Value High limit
		CV(p)	MI	0	0	Control Value CVp
		CV(i)	MI	0	0	Control Value CVi
		CV(d)	MI	0	0	Control Value CVd
	NO	RST Intgrl.	MB	0	0	Reset integral accumulated error; Siet to clear
		Enable PID	MB	0	0	Enable PID Bit (in ladder)
		Rev Action	MB	0	0	0: Reverse(Control type Heating) 1: Direct(Control typ
		Tune params	MI	0	0	Auto-tune parameters, 32 MIs

Note • If the system you are tuning has critical limits that are close to the setpoint, you

may need to avoid drastically overshooting the setpoint during autotune. To accomplish this in, for example, a heating system, run an initial autotune procedure using a setpoint temperature lower than that the desired, final temperature. You can then observe the system temperature reaction, and repeat autotune, gradually increasing the setpoint temperature until the system reaches the desired temperature.

Controlling the Physical Output

Before beginning auto-tune, you may want to control and initialize the actual physical output that feeds energy into the PID-controlled system. If, for example, you are using a V120-12-UN2, you can suspend the action of a high-speed output by using Ladder Logic to turn off the Output's Run MB, and initialize the output by storing 0 into the linked MI in the Ladder program.

M90/91 Auto-tune

Before a PID loop can be auto-tuned:

- The OPLC must be connected to the I/O module whose output feeds energy into the PIDcontrolled system.
- The OPLC's Ladder application must contain a PID function that is activated by an MB that is used <u>only</u> for that purpose. When the loop is auto-tuned, the PID Server utility uses this MB to disable the PLC's PID function.
- The PC running PID Server must have an established communication link to the controller.
- The PID Server parameters must be linked to the same operands linked to the PLC's PID function.

Auto-tuning with PID Server (M90/91)

1. Start PID Server from:

- within VisiLogic via the menu bar, Tools> PID Server,

or

- within Windows via Start>Programs>Unitronics> PID Server.

- 2. Click on the New File icon to create a new PID loop Auto-tune file.
- Locate Loop Properties in the lower right-hand part of the screen. Link all of the parameters to the same operands used in the PID function within the U90Ladder application. To link a parameter, click on the Address field and select the desired address.

L	Loop Pro	perties				
	Visible	Function (perand Addr	ÛÚ	·	Description
- 1	~	SP	м	1	1200	Set Ploint - the target value
	~	PV	MI	0	891	Process Value - the PID input
	~	CV	MI	2	302	Control Value - the PID output
_		ST	MI	4	0	Sample Time - defined in units of 10 mSec .Recomm
			MI	5	0	Proportional band - defined in units of 0.1% (P gain)
Click	the Ad	dress field	MI	6	v 0	Integral time - defined in units of 1 second (I gain)
then	on the	drop do wn		6		Derivative time - defined in units of 1 second (D gain)
arro	w that a	appears.	M	7	la lo	Input Range - Process Value Low limit
CIICK	(the des	sirea	MI	8	 0 	Input Range - Process Value High limit
auur	ess.		MI	10	0	Output Range - Process Value Low limit
_		et tigit	MI	11	0	Output Range - Process Value High limit
		CV(p)	MI	12	0	Control Value CVp
		CV(i)	MI	13	0	Control Value CVi
- 1		CV(d)	MI	14	0	Control Value CVd
		RST Intgrl.	MB	0	0	Reset integral accumulated error; Siet to clear
		Enable PID	MB	1	0	Enable PID Bit (in ladder)
		Rev Action	MB	2	0	0: Reverse(Control type Heating) 1: Direct(Control typ
		Tune param	⊪s MI 4	00	0	Auto-tune parameters, 32 MIs

The last parameter is the Enable PID bit, which must be the MB used to activate the PID function within the U90Ladder application.

	L.	.oop Pr	opertie	ŝ				
		Visible	Funct	ion Operan	d Addr	ំ វិវ	Description	
	ᆔ	<	SP	M	1	1200	Set Point - the target value	
The		V	ΡV	MI	0	891	Process Value - the PID input	
parameter 🔍		✓	CV	MI	2	302	Control Value - the PID output	
linksmust			Кр	MI	4	0	Proportional band - defined in units of 0.1% (P gain)	
beidentical			Ti	M	5	0	Integral time - defined in units of 1 second (I gain)	
			Td	M	3	• 0	Derivative time - defined in units of 1 second (D gain)	
			SpPv-	High M		2 00	Input Range - Process Value High limit	
			SpPv-	Low Mig	, r	υp	Input Range - Process Value Low limit	
			CV-Hi	gh MI ^{L≌}	10	1000	Output Range - Process Value High limit	
			CV-Mi	n Mi	11	0	Output Range - Process Value Low limit	
			RST In	itari. MB	2	0	Reset integral accumulated error; Set to clear	
_	Ц		Enable	PID MB	50	0	Enable PID Bit (in ladde)	
	12				-			
		PID	Settir	ngs - Loop	1			X
		Τv	ое	Functionality	Add	ress	Sumbol	
	ևը			PV	1	D	Process Value - the PID input	
				SP	1	1	Set Point - the target value	
				CV	13	2	Control Value - the PID output	
				ST	13	3	SampleTime - defined in units of 10 mSec (Recommended value	e=100)
				Kp	1	4	Proportional band - defined in units of 0.1%	
				Ti	1	5	Integral time - defined in units of 1 second	
Enable 🔍		м	0	Td	10	6	Derivative time - defined in units of 1 second	
PID MB				Reserved	1	7	Reserved for future use	
				SpPy	18	8	Process Value high limit - the maximum PV input value	
					1	9	Process Value low limit - the minimum PV input value	
				CV	2		Control Value high limit - the maximum CV output value	
					2	1	Control Value low limit - the minimum CV output value	
				Reserved	2	2	Reserved for future use	
				Exchis DID	2	3	Reserved for future use	
_				Enable MD	1		Enable PID - UN: PID runs, UFF: PID disabled	
				Direct	1	2	Action: u=meverse(Heating), 1=Direct(Looing)	
				RSTING	1.	6	Heset integral accumulated error - UN: Liear, UFF: Continue	

- 4. From the Connection menu, click OPLC model, and then select your controller type.
- 5. From the Connection menu, click Communication PC Settings, and select the appropriate settings.
- Click the Auto-tune icon. The PID Server utility begins to run. Note that by checking the Visible option in Loop Properties, you cause PID Server to display a color-coded graphical representation of the Auto-tune process.

Note • If the system you are tuning has critical limits that are close to the setpoint, you may need to avoid drastically overshooting the setpoint during autotune. To accomplish this in, for example, a heating system, run an initial autotune procedure using a setpoint temperature lower than that the desired, final temperature. You can then observe the system temperature reaction, and repeat autotune, gradually increasing the setpoint temperature until the system reaches the desired temperature.

Controlling the Physical Output

Before beginning auto-tune, you may want to control and initialize the actual physical output that feeds energy into the PID-controlled system. If, for example, you are using an M91-12-UN2, you can suspend the action of a high-speed output by using Ladder Logic to turn off the Output's HSO Enable MB, and initialize the output by storing 0 into the linked MI in the Ladder program.

PID Server Features

Import Operand Addresses

The PID function in VisiLogic enables you to export the PID operand addresses in a text file. You can then use the Import operand Address feature to import the text file; the PID operand addresses in the text file will be automatically addresses entered into PID server.

PID Server - [Untitled]
📺 File Connection Loop Help
🗋 😂 🖬 🛛 💐 Start AutoTune ᡝ 🗐 📴 💁 💁 Horizontal: - + Vertical: - + 🔯 Tell Us 💕
1 000

Saving File Parameters

Whenever you click the Save icon, the file is saved as a .upl file. This file may be opened by any PC running PID Server. .upl files include the Loop Properties parameter links, comments, and PID auto-tune data up to the time that you click Save. If you wish to save only the Loop Properties without the data, by creating them, clicking Save, and storing the file.

Zoom

Click, then drag the cursor down, then release the mouse button to Zoom in on a particular area.

Click and drag the cursor up to reverse the Zoom effect.

Increase/Decrease Display View Size

Click the + icon on the toolbar to increase the graph sample size; click the- icon to decrease it.

Export

Located on the Loop menu, Export enables you to either export the auto-tune data to Excel, or to save a .bmp file of the auto-tune graph.

Comments

The Comment field is located in the lower left-hand corner of the PID server window. Any text you enter here is saved together with the .upl file.

What's this ?

Our mission is to make automation simple and efficient. Unitronics' R&D has developed and field-tested PID Server in order to provide you with fast, easy loop tuning.

To enable us to fine-tune PID Server to suit a broad range of PID applications, we would appreciate your using the 'Tell Us' feature. Clicking 'Tell us' will create an email with an attached copy of your auto-tune and PID process.

If possible, before you send the email, please take a moment to put the details of your application in the body of the email.

Note that in Windows XP, Windows will display the following dialog box; simply click yes to send the message to Unitronics.

	Microso	oft Outlook 🛛 🔀
	⚠	A program is trying to access e-mail addresses you have stored in Outlook. Do you want to allow this?
Click Yes to send the email		If this is unexpected, it may be a virus and you should choose "No".
		Allow access for 1 minute
		Yes No Helip